Los métodos de Taylor tienen la propiedad de un error local de truncamiento de orden superior, pero la desventaja de requerir el cálculo y la evaluación de las derivadas de f(t, y). Esto resulta algo lento y complicado, en la mayoría de los problemas, razón por la cual, en la práctica casi no se utilizan. El método de Euler, lamentablemente requiere de un paso muy pequeño para una precisión razonable.
Los métodos de Runge kutta tienen el error local de truncamiento del mismo orden que los métodos de Taylor, pero prescinden del cálculo y evaluación de las derivadas de la función f(t, y).
Se presenta de nuevo el problema de valor inicial cuya solución se intenta aproximar:
![]() |
(1)
|
Como en los métodos anteriores, se determina primero la malla {t0, t1, ... , tN} de paso h, donde t0 = a y tN = b. En estos puntos es donde se va a obtener la aproximación de la solución.
En esencia, los métodos de Runge-Kutta son generalizaciones de la fórmula básica de Euler yi+1 = yi + h f(ti, yi) en los que el valor de la función f se reemplaza por un promedio ponderado de valores de f en el intervalo ti ≤ t ≤ ti+1, es decir,
![]() |
(2)
|
En esta expresión las ponderaciones wi, i = 1, ..., m son constantes para las que en general se pide que su suma sea igual a 1, es decir, w1 + w2 + ... + wm = 1, y cada kj es la función f evaluada en un punto seleccionado (t, y) para el cual ti ≤ t ≤ ti+1. Se mostrará que los kj se definen en forma recursiva.
Se define como orden del método al número m, es decir, a la cantidad de términos que se usan en el promedio ponderado.
No hay comentarios:
Publicar un comentario